Direct Memory Access and DMA-Controlled I/O
Introduction

• The DMA I/O technique provides direct access to the memory while the microprocessor is temporarily disabled.

• This chapter also explains the operation of disk memory systems and video systems that are often DMA-processed.

• Disk memory includes floppy, fixed, and optical disk storage. Video systems include digital and analog monitors.
BASIC DMA OPERATION

• Two control signals are used to request and acknowledge a direct memory access (DMA) transfer in the microprocessor-based system.
 – the HOLD pin is an input used to request a DMA action
 – the HLDA pin is an output that acknowledges the DMA action

• Figure 1 shows the timing that is typically found on these two DMA control pins.
- HOLD is sampled in any clocking cycle
- when the processor recognizes the hold, it stops executing software and enters hold cycles
- HOLD input has higher priority than INTR or NMI
- the only microprocessor pin that has a higher priority than a HOLD is the RESET pin
• HLDA becomes active to indicate the processor has placed its buses at high-impedance state.
 – as can be seen in the timing diagram, there are a few clock cycles between the time that HOLD changes and until HLDA changes

• HLDA output is a signal to the requesting device that the processor has relinquished control of its memory and I/O space.
 – one could call HOLD input a DMA request input and HLDA output a DMA grant signal
Basic DMA Definitions

• Direct memory accesses normally occur between an I/O device and memory without the use of the microprocessor.
 – a **DMA read** transfers data from the memory to the I/O device
 – A **DMA write** transfers data from an I/O device to memory

• Memory & I/O are controlled simultaneously.
 – which is why the system contains separate memory and I/O control signals
• A DMA read causes the MRDC and IOWC signals to activate simultaneously.
 - transferring data from memory to the I/O device
• A DMA write causes the MWTC and IORC signals to both activate.
• 8086/8088 require a controller or circuit such as shown in Fig 2 for control bus signal generation.
• The DMA controller provides memory with its address, and controller signal (DACK) selects the I/O device during the transfer.
Figure 2 A circuit that generates system control signals in a DMA environment.
• Data transfer speed is determined by speed of the memory device or a DMA controller.
 – if memory speed is 50 ns, DMA transfers occur at rates up to 1/50 ns or 20 M bytes per second
 – if the DMA controller functions at a maximum rate of 15 MHz with 50 ns memory, maximum transfer rate is 15 MHz because the DMA controller is slower than the memory
• In many cases, the DMA controller slows the speed of the system when transfers occur.
• The switch to serial data transfers in modern systems has made DMA is less important.
• The serial PCI Express bus transfers data at rates exceeding DMA transfers.
• The SATA (serial ATA) interface for disk drives uses serial transfers at the rate of 300 Mbps
 – and has replaced DMA transfers for hard disks
• Serial transfers on main-boards between components using can approach 20 Gbps for the PCI Express connection.
THE 8237 DMA CONTROLLER

• The 8237 supplies memory & I/O with control signals and memory address information during the DMA transfer.
 – actually a special-purpose microprocessor whose job is high-speed data transfer between memory and I/O

• Figure 3 shows the pin-out and block diagram of the 8237 programmable DMA controller.
Figure 3 The 8237A-5 programmable DMA controller. (a) Block diagram and (b) pin-out. (Courtesy of Intel Corporation.)
• 8237 is not a discrete component in modern microprocessor-based systems.
 – it appears within many system controller chip sets
• 8237 is a four-channel device compatible with 8086/8088, adequate for small systems.
 – expandable to any number of DMA channel inputs
• 8237 is capable of DMA transfers at rates up to 1.6M bytes per second.
 – each channel is capable of addressing a full 64K-byte section of memory and transfer up to 64K bytes with a single programming
8237 Pin Definitions

CLK

- **Clock** input is connected to the system clock signal as long as that signal is 5 MHz or less.
 - in the 8086/8088 system, the clock must be inverted for the proper operation of the 8237
8237 Pin Definitions

CS

- **Chip select** enables 8237 for programming.
- The CS pin is normally connected to the output of a decoder.
- The decoder does not use the 8086/8088 control signal IO/M(M/IO) because it contains the new memory and I/O control signals (MEMR, MEMW, IOR and IOW).
8237 Pin Definitions

RESET

- The **reset** pin clears the command, status, request, and temporary registers.
- It also clears the first/last flip-flop and sets the mask register.
 - this input primes the 8237 so it is disabled until programmed otherwise
8237 Pin Definitions

READY

- A logic 0 on the `ready` input causes the 8237 to enter wait states for slower memory components.

HLDA

- A `hold acknowledge` signals 8237 that the microprocessor has relinquished control of the address, data, and control buses.
8237 Pin Definitions

DREQ\textsubscript{0}–DREQ\textsubscript{3}

- **DMA request inputs** are used to request a transfer for each of the four DMA channels.
 - the polarity of these inputs is programmable, so they are either active-high or active-low inputs

DB\textsubscript{0}–DB\textsubscript{7}

- **Data bus** pins are connected to the processor data bus connections and used during the programming of the DMA controller.
8237 Pin Definitions

IOR

- **I/O read** is a bidirectional pin used during programming and during a DMA write cycle.

IOW

- **I/O write** is a bidirectional pin used during programming and during a DMA read cycle.
8237 Pin Definitions

EOP

• **End-of-process** is a bidirectional signal used as an input to terminate a DMA process or as an output to signal the end of the DMA transfer.
 – often used to interrupt a DMA transfer at the end of a DMA cycle
8237 Pin Definitions

$A_0 - A_3$

- These **address pins** select an internal register during programming and provide part of the DMA transfer address during a DMA action.
 - Address pins are outputs that provide part of the DMA transfer address during a DMA action.
8237 Pin Definitions

HRQ

- **Hold request** is an output that connects to the HOLD input of the microprocessor in order to request a DMA transfer.
8237 Pin Definitions

DACK\textsubscript{0}–DACK\textsubscript{3}

- DMA channel acknowledge outputs acknowledge a channel DMA request.
- These outputs are programmable as either active-high or active-low signals.
 - DACK outputs are often used to select the DMA-controlled I/O device during the DMA transfer.
8237 Pin Definitions

AEN

• **Address enable** signal enables the DMA address latch connected to the DB$_7$–DB$_0$ pins on the 8237.
 – also used to disable any buffers in the system connected to the microprocessor
8237 Pin Definitions

ADSTB

- **Address strobe** functions as ALE, except it is used by the DMA controller to latch address bits $A_{15} - A_8$ during the DMA transfer.

MEMR

- **Memory read** is an output that causes memory to read data during a DMA read cycle.
• Memory write is an output that causes memory to write data during a DMA write cycle.
8237 Internal Registers

CAR

- The **current address register** holds a 16-bit memory address used for the DMA transfer.
 - each channel has its own current address register for this purpose

- When a byte of data is transferred during a DMA operation, CAR is either incremented or decremented.
 - depending on how it is programmed
8237 Internal Registers

CWCR

- The **current word count register** programs a channel for the number of bytes (up to 64K) transferred during a DMA action.
- The number loaded into this register is one less than the number of bytes transferred.
 - for example, if a 10 is loaded to CWCR, then 11 bytes are transferred during the DMA action.
The base address (BA) and base word count (BWC) registers are used when auto-initialization is selected for a channel.

In auto-initialization mode, these registers are used to reload the CAR and CWCR after the DMA action is completed.

- allows the same count and address to be used to transfer data from the same memory area
8237 Internal Registers

CR

• The **command register** programs the operation of the 8237 DMA controller.
• The register uses bit position 0 to select the memory-to-memory DMA transfer mode.
 – memory-to-memory DMA transfers use DMA channel 0 to hold the source address
 – DMA channel 1 holds the destination address
• Similar to operation of a MOVSB instruction.
Figure 4 8237A-5 command register. (Courtesy of Intel Corporation.)
8237 Internal Registers

MR

- The **mode register** programs the mode of operation for a channel.
- Each channel has its own mode register as selected by bit positions 1 and 0.
 - remaining bits of the mode register select operation, auto-initialization, increment/decrement, and mode for the channel
Figure 5 8237A-5 mode register. (Courtesy of Intel Corporation.)
8237 Internal Registers

BR

• The **bus request register** is used to request a DMA transfer via software.
 – very useful in memory-to-memory transfers, where an external signal is not available to begin the DMA transfer
Figure 6 8237A-5 request register. (Courtesy of Intel Corporation.)
8237 Internal Registers

MRSR

- The **mask register set/reset** sets or clears the channel mask.
 - if the mask is set, the channel is disabled
 - the RESET signal sets all channel masks to disable them
Figure 7 8237A-5 mask register set/reset mode. (Courtesy of Intel Corporation.)
The mask register clears or sets all of the masks with one command instead of individual channels, as with the MRSR.
Figure 8 8237A-5 mask register. (Courtesy of Intel Corporation.)
8237 Internal Registers
SR

• The **status register** shows status of each DMA channel. The TC bits indicate if the channel has reached its terminal count (transferred all its bytes).

• When the terminal count is reached, the DMA transfer is terminated for most modes of operation.
 – the request bits indicate whether the DREQ input for a given channel is active
Figure 9 8237A-5 status register. (Courtesy of Intel Corporation.)
Software Commands

• Three software commands are used to control the operation of the 8237.
• These commands do not have a binary bit pattern, as do various control registers within the 8237.
 – a simple output to the correct port number enables the software command
• Fig 10 shows I/O port assignments that access all registers and the software commands.
Figure 10 8237A-5 command and control port assignments. (Courtesy of Intel Corporation.)

<table>
<thead>
<tr>
<th>Signals</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3 A2 A1 A0 IOR IOW</td>
<td>Read Status Register</td>
</tr>
<tr>
<td>1 0 0 0 0 1</td>
<td>Write Command Register</td>
</tr>
<tr>
<td>1 0 0 1 0 1</td>
<td>Illegal</td>
</tr>
<tr>
<td>1 0 1 1 0 1</td>
<td>Write Request Register</td>
</tr>
<tr>
<td>1 0 1 0 0 1</td>
<td>Illegal</td>
</tr>
<tr>
<td>1 0 1 0 1 0</td>
<td>Write Single Mask Register Bit</td>
</tr>
<tr>
<td>1 0 1 1 0 1</td>
<td>Illegal</td>
</tr>
<tr>
<td>1 0 1 1 1 0</td>
<td>Write Mode Register</td>
</tr>
<tr>
<td>1 1 0 0 0 1</td>
<td>Illegal</td>
</tr>
<tr>
<td>1 1 0 0 1 0</td>
<td>Clear Byte Pointer Flip/Flop</td>
</tr>
<tr>
<td>1 1 0 1 0 1</td>
<td>Read Temporary Register</td>
</tr>
<tr>
<td>1 1 1 0 1 0</td>
<td>Master Clear</td>
</tr>
<tr>
<td>1 1 1 0 0 1</td>
<td>Illegal</td>
</tr>
<tr>
<td>1 1 1 0 1 0</td>
<td>Clear Mask Register</td>
</tr>
<tr>
<td>1 1 1 1 0 1</td>
<td>Illegal</td>
</tr>
<tr>
<td>1 1 1 1 1 0</td>
<td>Write All Mask Register Bits</td>
</tr>
</tbody>
</table>
8237 Software Commands

Master clear

• Acts exactly the same as the RESET signal to the 8237.
 – as with the RESET signal, this command disables all channels

Clear mask register

• Enables all four DMA channels.
8237 Software Commands

Clear the first/last flip-flop

- Clears the first/last (F/L) flip-flop within 8237.
- The F/L flip-flop selects which byte (low or high order) is read/written in the current address and current count registers.
 - if F/L = 0, the low-order byte is selected
 - if F/L = 1, the high-order byte is selected
- Any read or write to the address or count register automatically toggles the F/L flip-flop.
Programming the Address and Count Registers

- Figure 11 shows I/O port locations for programming the count and address registers for each channel.
- The state of the F/L flip-flop determines whether the LSB or MSB is programmed.
 - if the state is unknown, count and address could be programmed incorrectly
- It is important to disable the DMA channel before address and count are programmed.
Figure 11 8237A-5 DMA channel I/O port addresses. (Courtesy of Intel)

<table>
<thead>
<tr>
<th>Channel</th>
<th>Register</th>
<th>Operation</th>
<th>CS</th>
<th>IOE</th>
<th>IOW</th>
<th>A3</th>
<th>A2</th>
<th>A1</th>
<th>A0</th>
<th>Internal Flip-Flop</th>
<th>Data Bus DB0-DB7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Base and Current Address</td>
<td>Write</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>A0-A7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>A8-A15</td>
</tr>
<tr>
<td></td>
<td>Current Address</td>
<td>Read</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>A0-A7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>A8-A15</td>
</tr>
<tr>
<td></td>
<td>Base and Current Word Count</td>
<td>Write</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>W0-W7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>W8-W15</td>
</tr>
<tr>
<td></td>
<td>Current Word Count</td>
<td>Read</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>W0-W7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>W8-W15</td>
</tr>
<tr>
<td>1</td>
<td>Base and Current Address</td>
<td>Write</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>A0-A7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>A8-A15</td>
</tr>
<tr>
<td></td>
<td>Current Address</td>
<td>Read</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>A0-A7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>A8-A15</td>
</tr>
<tr>
<td></td>
<td>Base and Current Word Count</td>
<td>Write</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>W0-W7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>W8-W15</td>
</tr>
<tr>
<td></td>
<td>Current Word Count</td>
<td>Read</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>W0-W7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>W8-W15</td>
</tr>
<tr>
<td>2</td>
<td>Base and Current Address</td>
<td>Write</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>A0-A7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>A8-A15</td>
</tr>
<tr>
<td></td>
<td>Current Address</td>
<td>Read</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>A0-A7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>A8-A15</td>
</tr>
<tr>
<td></td>
<td>Base and Current Word Count</td>
<td>Write</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>W0-W7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>W8-W15</td>
</tr>
<tr>
<td></td>
<td>Current Word Count</td>
<td>Read</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>W0-W7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>W8-W15</td>
</tr>
<tr>
<td>3</td>
<td>Base and Current Address</td>
<td>Write</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>A0-A7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>A8-A15</td>
</tr>
<tr>
<td></td>
<td>Current Address</td>
<td>Read</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>A0-A7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>A8-A15</td>
</tr>
<tr>
<td></td>
<td>Base and Current Word Count</td>
<td>Write</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>W0-W7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>W8-W15</td>
</tr>
<tr>
<td></td>
<td>Current Word Count</td>
<td>Read</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>W0-W7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>W8-W15</td>
</tr>
</tbody>
</table>
• Four steps are required to program the 8237:
 – (1) The F/L flip-flop is cleared using a clear F/L command
 – (2) the channel is disabled
 – (3) LSB & MSB of the address are programmed
 – (4) LSB & MSB of the count are programmed
• Once these four operations are performed, the channel is programmed and ready to use.
 – additional programming is required to select the mode of operation before the channel is enabled and started
The 8237 Connected to the 80X86

- The address enable (AEN) output of 8237 controls the output pins of the latches and outputs of the 74LS257 (E).
 - during normal operation (AEN=0), latches A & C and the multiplexer (E) provide address bus bits $A_{19} - A_{16}$ and $A_{7} - A_{0}$

- See Figure 12.
Figure 12 Complete 8088 minimum mode DMA system.
• The multiplexer provides the system control signals as long as the 80X86 is in control of the system.
 – during a DMA action (AEN=1), latches A & C are disabled along with the multiplexer (E)
 – latches D and B now provide address bits $A_{19} - A_{16}$ and $A_{15} - A_8$
• Address bus bits $A_7 - A_0$ are provided directly by the 8237 and contain part of the DMA transfer address.
• The DMA controller provides control signals.
Memory-to-Memory Transfer with the 8237

• Memory-to-memory transfer is much more powerful than the automatically repeated MOVSB instruction.
 – most modern chip sets do not support the memory-to-memory feature
• 8237 requires only 2.0 μs per byte, which is over twice as fast as a software data transfer.
• This is not true if an 80386, 80846, or Pentium is in use in the system.
Sample Memory-to-Memory DMA Transfer

- Suppose contents of memory locations 10000H–13FFFH are to be transferred to locations 14000H–17FFFH.
 - accomplished with a repeated string move instruction or with the DMA controller

- Example 1 shows the software required to initialize the 8237 and program latch B in Figure 12 for this DMA transfer.
Example 1

; A procedure that transfers a block of data using the 8237A
; DMA controller in Figure 13-12. This is a memory-to-memory
; transfer.

; Calling parameters:
; SI = source address
; DI = destination address
; CX = count
; ES = segment of source and destination

LATCHB EQU 10H
CLEARF EQU 7CH
CHOA EQU 70H
CH1A EQU 72H
CH1C EQU 73H
MODE EQU 7BH
CMMD EQU 78H
MASKS EQU 7FH
REQ EQU 79H
STATUS EQU 78H

TRANS PROC NEAR USES AX

 MOV AX, ES
 MOV AL, AH
 SHR AL, 4
 OUT LATCHB, AL
 OUT CLEARF, AL

 ; program latch B

 MOV AX, ES
 SHL AX, 4
 ADD AX, SI
 OUT CH0A, AL
 MOV AL, AH
 OUT CH0A

 ; program source address

 MOV AX, ES
 SHL AX, 4
 ADD AX, DI
 OUT CH1A, AL
 MOV AL, AH
 OUT CH1A, AL

 ; program destination address
Example 1

MOV AX, CX ; program count
DEC AX
OUT CH1C, AL
MOV AL, AH
OUT CH1C, AL

MOV AL, 88H ; program mode
OUT MODE, AL
MOV AL, 85H
OUT MODE, AL

MOV AL, 1 ; enable block transfer
OUT CMMD, AL

MOV AL, 0EH ; unmask channel 0
OUT MASKS, AL

MOV AL, 4 ; start DMA
OUT REQ, AL

.REPEAT
IN AL, STATUS
.UNTIL AL & 1
RET

TRANS ENDP
Sample Memory Fill Using the 8237

• To fill an area of memory with the same data, the channel 0 source register is programmed to point to the same address throughout the transfer.
 – accomplished with the channel 0 hold mode

• The controller copies the contents of this single memory location to an entire block of memory addressed by channel 1.

• This has many useful applications.
DMA-Processed Printer Interface

- Fig 13 illustrates the hardware added to Fig 12 for a DMA-controlled printer interface.
 - software to control this interface is simple as only the address of the data and number of characters to be printed are programmed

- Once programmed, the channel is enabled, and the DMA action transfers a byte at a time to the printer interface.
 - each time a printer ACK signal is received
Figure 13 DMA-processed printer interface.
THE END